Oriented Euler Complexes and Signed Perfect Matchings
نویسندگان
چکیده
This paper presents “oriented pivoting systems” as an abstract framework for complementary pivoting. It gives a unified simple proof that the endpoints of complementary pivoting paths have opposite sign. A special case are the Nash equilibria of a bimatrix game at the ends of Lemke–Howson paths, which have opposite index. For Euler complexes or “oiks”, an orientation is defined which extends the known concept of oriented abstract simplicial manifolds. Ordered “room partitions” for a family of oriented oiks come in pairs of opposite sign. For an oriented oik of even dimension, this sign property holds also for unordered room partitions. In the case of a two-dimensional oik, these are perfect matchings of an Euler graph, with the sign as defined for Pfaffian orientations of graphs. A near-linear time algorithm is given to find in a graph with an Eulerian orientation a second perfect matching of opposite sign, in contrast to the complementary pivoting algorithm which may be exponential.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملSigned Lozenge Tilings
It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed v...
متن کاملMatchings in Graphs on Non-orientable Surfaces
P.W. Kasteleyn stated that the number of perfect matchings in a graph embedding on a surface of genus g is given by a linear combination of 4 Pfafans of modi ed adjacencymatrices of the graph, but didn't actually give the matrices or the linear combination. We generalize this to enumerating the perfect matchings of a graph embedding on an arbitrary compact boundaryless 2-manifold S with a linea...
متن کاملStatistics on wreath products, perfect matchings, and signed words
We introduce a natural extension of Adin, Brenti, and Roichman’s major-index statistic nmaj on signed permutations (Adv. Appl. Math. 27, (2001), 210−244) to wreath products of a cyclic group with the symmetric group. We derive “insertion lemmas” which allow us to give simple bijective proofs that our extension has the same distribution as another statistic on wreath products introduced by Adin ...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 150 شماره
صفحات -
تاریخ انتشار 2015